Prev Next

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@ This is cppad-20221105 documentation. Here is a link to its current documentation .
Examples and Tests: Abs-normal Representation of Non-Smooth Functions

Reference
Andreas Griewank, Jens-Uwe Bernt, Manuel Radons, Tom Streubel, Solving piecewise linear systems in abs-normal form, Linear Algebra and its Applications, vol. 471 (2015), pages 500-530.

Contents
abs_get_started.cppabs_normal Getting Started: Example and Test
abs_print_matabs_normal: Print a Vector or Matrix
abs_evalabs_normal: Evaluate First Order Approximation
simplex_methodabs_normal: Solve a Linear Program Using Simplex Method
lp_boxabs_normal: Solve a Linear Program With Box Constraints
abs_min_linearabs_normal: Minimize a Linear Abs-normal Approximation
min_nso_linearNon-Smooth Optimization Using Abs-normal Linear Approximations
qp_interiorSolve a Quadratic Program Using Interior Point Method
qp_boxabs_normal: Solve a Quadratic Program With Box Constraints
abs_min_quadabs_normal: Minimize a Linear Abs-normal Approximation
min_nso_quadNon-Smooth Optimization Using Abs-normal Quadratic Approximations

Input File: example/abs_normal/abs_normal.omh