@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
This is cppad-20221105 documentation. Here is a link to its
current documentation
.
EqualOpSeq: Example and Test
# include <cppad/cppad.hpp>
bool EqualOpSeq(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::EqualOpSeq;
// domain space vector
size_t n = 1;
double x0 = 1.;
CPPAD_TESTVECTOR(AD<double>) x(n);
x[0] = x0;
// declare independent variables and start tape recording
CppAD::Independent(x);
AD<double> a = 1. + x[0]; // this variable is 1 + x0
AD<double> b = 2. * x[0]; // this variable is 2 * x0// both a and b are variables
ok &= (a == b); // 1 + 1 == 2 * 1
ok &= ! EqualOpSeq(a, b); // 1 + x[0] != 2 * x[0]// range space vector
size_t m = 1;
CPPAD_TESTVECTOR(AD<double>) y(m);
y[0] = a;
// both y[0] and a are variablesEqualOpSeq(y[0], a); // 2 * x[0] == 2 * x[0]// create f: x -> y and stop tape recording
CppAD::ADFun<double> f(x, y);
// both a and b are parameters (after the creation of f above)
ok &= EqualOpSeq(a, b); // 1 + 1 == 2 * 1return ok;
}