Prev Next eigen_det.cpp Headings

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its current documentation .
Using Eigen To Compute Determinant: Example and Test
# include <cppad/example/cppad_eigen.hpp>
# include <cppad/speed/det_by_minor.hpp>
# include <Eigen/Dense>

bool eigen_det(void)
{   bool ok = true;
    using CppAD::AD;
    using CppAD::NearEqual;
    using Eigen::Matrix;
    using Eigen::Dynamic;
    using Eigen::Index;
    //
    typedef Matrix< double     , Dynamic, Dynamic > matrix;
    typedef Matrix< AD<double> , Dynamic, Dynamic > a_matrix;
    //
    typedef CppAD::eigen_vector<double>          vector;
    typedef CppAD::eigen_vector< AD<double> >    a_vector;
    //

    // domain and range space vectors
    size_t size = 3, n  = size * size, m = 1;
    a_vector a_x(n), a_y(m);
    vector x(n);

    // set and declare independent variables and start tape recording
    for(size_t i = 0; i < size; i++)
    {   for(size_t j = 0; j < size; j++)
        {   // lower triangular matrix
            a_x[i * size + j] = x[i * size + j] = 0.0;
            if( j <= i )
                a_x[i * size + j] = x[i * size + j] = double(1 + i + j);
        }
    }
    CppAD::Independent(a_x);

    // copy independent variable vector to a matrix
    Index Size = Index(size);
    a_matrix a_X(Size, Size);
    matrix     X(Size, Size);
    for(size_t i = 0; i < size; i++)
    {   for(size_t j = 0; j < size; j++)
        {   Index I = Index(i);
            Index J = Index(j);
            X(I ,J)   = x[i * size + j];
            // If we used a_X(i, j) = X(i, j), a_X would not depend on a_x.
            a_X(I, J) = a_x[i * size + j];
        }
    }

    // Compute the log of determinant of X
    a_y[0] = log( a_X.determinant() );

    // create f: x -> y and stop tape recording
    CppAD::ADFun<double> f(a_x, a_y);

    // check function value
    double eps = 100. * CppAD::numeric_limits<double>::epsilon();
    CppAD::det_by_minor<double> det(size);
    ok &= NearEqual(Value(a_y[0]) , log(det(x)), eps, eps);

    // compute the derivative of y w.r.t x using CppAD
    vector jac = f.Jacobian(x);

    // check the derivative using the formula
    // d/dX log(det(X)) = transpose( inv(X) )
    matrix inv_X = X.inverse();
    for(size_t i = 0; i < size; i++)
    {   for(size_t j = 0; j < size; j++)
        {   Index I = Index(i);
            Index J = Index(j);
            ok &= NearEqual(jac[i * size + j], inv_X(J, I), eps, eps);
        }
    }

    return ok;
}

Input File: example/general/eigen_det.cpp