Prev Next double_det_lu.cpp

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its current documentation .
Double Speed: Determinant Using Lu Factorization

Specifications
See link_det_lu .

Implementation
# include <cppad/utility/vector.hpp>
# include <cppad/speed/det_by_lu.hpp>
# include <cppad/speed/uniform_01.hpp>

// Note that CppAD uses global_option["memory"] at the main program level
# include <map>
extern std::map<std::string, bool> global_option;

bool link_det_lu(
    size_t                           size     ,
    size_t                           repeat   ,
    CppAD::vector<double>           &matrix   ,
    CppAD::vector<double>           &det      )
{
    if(global_option["onetape"]||global_option["atomic"]||global_option["optimize"])
        return false;
    // -----------------------------------------------------
    // setup
    CppAD::det_by_lu<double>  Det(size);
    size_t n = size * size; // number of independent variables

    // ------------------------------------------------------

    while(repeat--)
    {   // get the next matrix
        CppAD::uniform_01(n, matrix);

        // computation of the determinant
        det[0] = Det(matrix);
    }
    return true;
}

Input File: speed/double/det_lu.cpp