Prev Next det_of_minor.cpp Headings

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@ This is cppad-20221105 documentation. Here is a link to its current documentation .
Determinant of a Minor: Example and Test
# include <vector>
# include <cstddef>
# include <cppad/speed/det_of_minor.hpp>

bool det_of_minor()
{   bool   ok = true;
    size_t i;

    // dimension of the matrix A
    size_t m = 3;
    // index vectors set so minor is the entire matrix A
    std::vector<size_t> r(m + 1);
    std::vector<size_t> c(m + 1);
    for(i= 0; i < m; i++)
    {   r[i] = i+1;
        c[i] = i+1;
    }
    r[m] = 0;
    c[m] = 0;
    // values in the matrix A
    double  data[] = {
        1., 2., 3.,
        3., 2., 1.,
        2., 1., 2.
    };
    // construct vector a with the values of the matrix A
    std::vector<double> a(data, data + 9);

    // evaluate the determinant of A
    size_t n   = m; // minor has same dimension as A
    double det = CppAD::det_of_minor(a, m, n, r, c);

    // check the value of the determinant of A
    ok &= (det == (double) (1*(2*2-1*1) - 2*(3*2-1*2) + 3*(3*1-2*2)) );

    // minor where row 0 and column 1 are removed
    r[m] = 1;  // skip row index 0 by starting at row index 1
    c[0] = 2;  // skip column index 1 by pointing from index 0 to index 2
    // evaluate determinant of the minor
    n   = m - 1; // dimension of the minor
    det = CppAD::det_of_minor(a, m, m-1, r, c);

    // check the value of the determinant of the minor
    ok &= (det == (double) (3*2-1*2) );

    return ok;
}

Input File: speed/example/det_of_minor.cpp