@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
This is cppad-20221105 documentation. Here is a link to its
current documentation
.
Determinant of a Minor: Example and Test
# include <vector>
# include <cstddef>
# include <cppad/speed/det_of_minor.hpp>
bool det_of_minor()
{ bool ok = true;
size_t i;
// dimension of the matrix A
size_t m = 3;
// index vectors set so minor is the entire matrix A
std::vector<size_t> r(m + 1);
std::vector<size_t> c(m + 1);
for(i= 0; i < m; i++)
{ r[i] = i+1;
c[i] = i+1;
}
r[m] = 0;
c[m] = 0;
// values in the matrix A
double data[] = {
1., 2., 3.,
3., 2., 1.,
2., 1., 2.
};
// construct vector a with the values of the matrix A
std::vector<double> a(data, data + 9);
// evaluate the determinant of A
size_t n = m; // minor has same dimension as A
double det = CppAD::det_of_minor(a, m, n, r, c);
// check the value of the determinant of A
ok &= (det == (double) (1*(2*2-1*1) - 2*(3*2-1*2) + 3*(3*1-2*2)) );
// minor where row 0 and column 1 are removed
r[m] = 1; // skip row index 0 by starting at row index 1
c[0] = 2; // skip column index 1 by pointing from index 0 to index 2// evaluate determinant of the minor
n = m - 1; // dimension of the minor
det = CppAD::det_of_minor(a, m, m-1, r, c);
// check the value of the determinant of the minor
ok &= (det == (double) (3*2-1*2) );
return ok;
}