@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its
current documentation
.
Complex Polynomial: Example and Test
Poly
Select this link to view specifications for Poly
:
// Complex examples should supppress conversion warnings# include <cppad/wno_conversion.hpp>
# include <cppad/cppad.hpp>
# include <complex>
bool complex_poly(void)
{ bool ok = true;
size_t deg = 4;
using CppAD::AD;
using CppAD::Poly;
typedef std::complex<double> Complex;
// polynomial coefficientsCPPAD_TESTVECTOR( Complex ) a (deg + 1); // coefficients for p(z)CPPAD_TESTVECTOR(AD<Complex>) A (deg + 1);
size_t i;
for(i = 0; i <= deg; i++)
A[i] = a[i] = Complex(double(i), double(i));
// independent variable vectorCPPAD_TESTVECTOR(AD<Complex>) Z(1);
Complex z = Complex(1., 2.);
Z[0] = z;
Independent(Z);
// dependent variable vector and indicesCPPAD_TESTVECTOR(AD<Complex>) P(1);
// dependent variable values
P[0] = Poly(0, A, Z[0]);
// create f: Z -> P and vectors used for derivative calculations
CppAD::ADFun<Complex> f(Z, P);
CPPAD_TESTVECTOR(Complex) v( f.Domain() );
CPPAD_TESTVECTOR(Complex) w( f.Range() );
// check first derivative w.r.t z
v[0] = 1.;
w = f.Forward(1, v);
Complex p = Poly(1, a, z);
ok &= ( w[0] == p );
// second derivative w.r.t z is 2 times its second order Taylor coeff
v[0] = 0.;
w = f.Forward(2, v);
p = Poly(2, a, z);
ok &= ( 2. * w[0] == p );
return ok;
}