|
Prev
| Next
|
|
|
|
|
|
code_gen_fun_file.cpp |
Headings |
@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its
current documentation
.
File Store and Retrieve a Code Gen Function: Example and Test
# include <cppad/example/code_gen_fun.hpp>
namespace {
void store(const std::string& file_name)
{ //
typedef CppAD::cg::CG<double> c_double;
typedef CppAD::AD<c_double> ac_double;
typedef CppAD::vector<ac_double> ac_vector;
//
// domain space vector
size_t n = 2;
ac_vector ac_x(n);
for(size_t j = 0; j < n; ++j)
ac_x[j] = 1.0 / double(j + 1);
// declare independent variables and start tape recording
CppAD::Independent(ac_x);
// range space vector
size_t m = 3;
ac_vector ac_y(m);
for(size_t i = 0; i < m; ++i)
ac_y[i] = double(i + 1) * sin( ac_x[i % n] );
// create c_f: x -> y and stop tape recording
CppAD::ADFun<c_double> c_f(ac_x, ac_y);
// create compiled version of c_f
code_gen_fun f(file_name, c_f);
}
}
bool file(void)
{ bool ok = true;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
//
// Store the compiled file in a dynamic link library
std::string file_name = "example_lib";
store(file_name);
//
// retrieve the compled function from the file
// (compiling take much longer than retrieving the file)
code_gen_fun f(file_name);
// evaluate the compiled function
size_t n = 2, m = 3;
CppAD::vector<double> x(n), y(m);
for(size_t j = 0; j < n; ++j)
x[j] = 1.0 / double(j + 2);
y = f(x);
// check function values
for(size_t i = 0; i < m; ++i)
{ double check = double(i + 1) * std::sin( x[i % n] );
ok &= CppAD::NearEqual(y[i] , check, eps99, eps99);
}
return ok;
}
Input File: example/code_gen_fun/file.cpp