Prev Next

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its current documentation .
Absolute Zero Multiplication

Syntax
z = azmul(xy)

Purpose
Evaluates multiplication with an absolute zero for any of the possible types listed below. The result is given by @[@ z = \left\{ \begin{array}{ll} 0 & {\rm if} \; x = 0 \\ x \cdot y & {\rm otherwise} \end{array} \right. @]@ Note if x is zero and y is infinity, ieee multiplication would result in not a number whereas z would be zero.

Base
If Base satisfies the base type requirements and arguments x , y have prototypes
    const 
Basex
    const 
Basey
then the result z has prototype
    
Base z

AD<Base>
If the arguments x , y have prototype
    const AD<
Base>& x
    const AD<
Base>& y
then the result z has prototype
    AD<
Basez

VecAD<Base>
If the arguments x , y have prototype
    const VecAD<
Base>::reference& x
    const VecAD<
Base>::reference& y
then the result z has prototype
    AD<
Basez

Example
The file azmul.cpp is an examples and tests of this function.
Input File: include/cppad/core/azmul.hpp