Prev
Next
Index->
contents
reference
index
search
external
Up->
CppAD
AD
ADValued
atomic
atomic_three
atomic_three_define
atomic_three_reverse
atomic_three_reverse.cpp
atomic_three_reverse.cpp
Headings->
Purpose
Function
Jacobian
Hessian
Start Class Definition
Constructor
for_type
forward
reverse
Use Atomic Function
@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
This is cppad-20221105 documentation . Here is a link to its
current documentation
.
Atomic Functions and Reverse Mode: Example and Test
Purpose
This example demonstrates reverse mode derivative calculation
using an atomic_three
function.
Function
For this example, the atomic function
@(@
g : \B{R}^3 \rightarrow \B{R}^2
@)@ is defined by
@[@
g(x) = \left( \begin{array}{c}
x_2 * x_2 \\
x_0 * x_1
\end{array} \right)
@]@
Jacobian
The corresponding Jacobian is
@[@
g^{(1)} (x) = \left( \begin{array}{ccc}
0 & 0 & 2 x_2 \\
x_1 & x_0 & 0
\end{array} \right)
@]@
Hessian
The Hessians of the component functions are
@[@
g_0^{(2)} ( x ) = \left( \begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array} \right)
\W{,}
g_1^{(2)} ( x ) = \left( \begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array} \right)
@]@
Start Class Definition
# include <cppad/cppad.hpp>
namespace { // isolate items below to this file
using CppAD:: vector; // abbreviate as vector
//
class atomic_reverse : public CppAD:: atomic_three< double > {
Constructor
public :
atomic_reverse ( const std:: string& name) :
CppAD:: atomic_three< double >( name)
{ }
private :
for_type
// calculate type_y
bool for_type (
const vector< double >& parameter_x ,
const vector< CppAD:: ad_type_enum>& type_x ,
vector< CppAD:: ad_type_enum>& type_y ) override
{ assert ( parameter_x. size () == type_x. size () );
bool ok = type_x. size () == 3 ; // n
ok &= type_y. size () == 2 ; // m
if ( ! ok )
return false ;
type_y[ 0 ] = type_x[ 2 ];
type_y[ 1 ] = std:: max ( type_x[ 0 ], type_x[ 1 ]);
return true ;
}
forward
// forward mode routine called by CppAD
bool forward (
const vector< double >& parameter_x ,
const vector< CppAD:: ad_type_enum>& type_x ,
size_t need_y ,
size_t order_low ,
size_t order_up ,
const vector< double >& taylor_x ,
vector< double >& taylor_y ) override
{
size_t q1 = order_up + 1 ;
# ifndef NDEBUG
size_t n = taylor_x. size () / q1;
size_t m = taylor_y. size () / q1;
# endif
assert ( n == 3 );
assert ( m == 2 );
assert ( order_low <= order_up );
// this example only implements up to first order forward mode
bool ok = order_up <= 1 ;
if ( ! ok )
return ok;
// ------------------------------------------------------------------
// Zero forward mode.
// This case must always be implemented
// g(x) = [ x_2 * x_2 ]
// [ x_0 * x_1 ]
// y^0 = f( x^0 )
if ( order_low <= 0 )
{ // y_0^0 = x_2^0 * x_2^0
taylor_y[ 0 * q1+ 0 ] = taylor_x[ 2 * q1+ 0 ] * taylor_x[ 2 * q1+ 0 ];
// y_1^0 = x_0^0 * x_1^0
taylor_y[ 1 * q1+ 0 ] = taylor_x[ 0 * q1+ 0 ] * taylor_x[ 1 * q1+ 0 ];
}
if ( order_up <= 0 )
return ok;
// ------------------------------------------------------------------
// First order one forward mode.
// This case is needed if first order forward mode is used.
// g'(x) = [ 0, 0, 2 * x_2 ]
// [ x_1, x_0, 0 ]
// y^1 = f'(x^0) * x^1
if ( order_low <= 1 )
{ // y_0^1 = 2 * x_2^0 * x_2^1
taylor_y[ 0 * q1+ 1 ] = 2.0 * taylor_x[ 2 * q1+ 0 ] * taylor_x[ 2 * q1+ 1 ];
// y_1^1 = x_1^0 * x_0^1 + x_0^0 * x_1^1
taylor_y[ 1 * q1+ 1 ] = taylor_x[ 1 * q1+ 0 ] * taylor_x[ 0 * q1+ 1 ];
taylor_y[ 1 * q1+ 1 ] += taylor_x[ 0 * q1+ 0 ] * taylor_x[ 1 * q1+ 1 ];
}
return ok;
}
reverse
// reverse mode routine called by CppAD
bool reverse (
const vector< double >& parameter_x ,
const vector< CppAD:: ad_type_enum>& type_x ,
size_t order_up ,
const vector< double >& taylor_x ,
const vector< double >& taylor_y ,
vector< double >& partial_x ,
const vector< double >& partial_y ) override
{
size_t q1 = order_up + 1 ;
size_t n = taylor_x. size () / q1;
# ifndef NDEBUG
size_t m = taylor_y. size () / q1;
# endif
assert ( n == 3 );
assert ( m == 2 );
// this example only implements up to second order reverse mode
bool ok = q1 <= 2 ;
if ( ! ok )
return ok;
//
// initalize summation as zero
for ( size_t j = 0 ; j < n; j++)
for ( size_t k = 0 ; k < q1; k++)
partial_x[ j * q1 + k] = 0.0 ;
//
if ( q1 == 2 )
{ // --------------------------------------------------------------
// Second order reverse first compute partials of first order
// We use the notation pg_ij^k for partial of F_i^1 w.r.t. x_j^k
//
// y_0^1 = 2 * x_2^0 * x_2^1
// pg_02^0 = 2 * x_2^1
// pg_02^1 = 2 * x_2^0
//
// y_1^1 = x_1^0 * x_0^1 + x_0^0 * x_1^1
// pg_10^0 = x_1^1
// pg_11^0 = x_0^1
// pg_10^1 = x_1^0
// pg_11^1 = x_0^0
//
// px_0^0 += py_0^1 * pg_00^0 + py_1^1 * pg_10^0
// += py_1^1 * x_1^1
partial_x[ 0 * q1+ 0 ] += partial_y[ 1 * q1+ 1 ] * taylor_x[ 1 * q1+ 1 ];
//
// px_0^1 += py_0^1 * pg_00^1 + py_1^1 * pg_10^1
// += py_1^1 * x_1^0
partial_x[ 0 * q1+ 1 ] += partial_y[ 1 * q1+ 1 ] * taylor_x[ 1 * q1+ 0 ];
//
// px_1^0 += py_0^1 * pg_01^0 + py_1^1 * pg_11^0
// += py_1^1 * x_0^1
partial_x[ 1 * q1+ 0 ] += partial_y[ 1 * q1+ 1 ] * taylor_x[ 0 * q1+ 1 ];
//
// px_1^1 += py_0^1 * pg_01^1 + py_1^1 * pg_11^1
// += py_1^1 * x_0^0
partial_x[ 1 * q1+ 1 ] += partial_y[ 1 * q1+ 1 ] * taylor_x[ 0 * q1+ 0 ];
//
// px_2^0 += py_0^1 * pg_02^0 + py_1^1 * pg_12^0
// += py_0^1 * 2 * x_2^1
partial_x[ 2 * q1+ 0 ] += partial_y[ 0 * q1+ 1 ] * 2.0 * taylor_x[ 2 * q1+ 1 ];
//
// px_2^1 += py_0^1 * pg_02^1 + py_1^1 * pg_12^1
// += py_0^1 * 2 * x_2^0
partial_x[ 2 * q1+ 1 ] += partial_y[ 0 * q1+ 1 ] * 2.0 * taylor_x[ 2 * q1+ 0 ];
}
// --------------------------------------------------------------
// First order reverse computes partials of zero order coefficients
// We use the notation pg_ij for partial of F_i^0 w.r.t. x_j^0
//
// y_0^0 = x_2^0 * x_2^0
// pg_00 = 0, pg_01 = 0, pg_02 = 2 * x_2^0
//
// y_1^0 = x_0^0 * x_1^0
// pg_10 = x_1^0, pg_11 = x_0^0, pg_12 = 0
//
// px_0^0 += py_0^0 * pg_00 + py_1^0 * pg_10
// += py_1^0 * x_1^0
partial_x[ 0 * q1+ 0 ] += partial_y[ 1 * q1+ 0 ] * taylor_x[ 1 * q1+ 0 ];
//
// px_1^0 += py_1^0 * pg_01 + py_1^0 * pg_11
// += py_1^0 * x_0^0
partial_x[ 1 * q1+ 0 ] += partial_y[ 1 * q1+ 0 ] * taylor_x[ 0 * q1+ 0 ];
//
// px_2^0 += py_1^0 * pg_02 + py_1^0 * pg_12
// += py_0^0 * 2.0 * x_2^0
partial_x[ 2 * q1+ 0 ] += partial_y[ 0 * q1+ 0 ] * 2.0 * taylor_x[ 2 * q1+ 0 ];
// --------------------------------------------------------------
return ok;
}
} ;
} // End empty namespace
Use Atomic Function
bool reverse ( void )
{ bool ok = true ;
using CppAD:: AD;
using CppAD:: NearEqual;
double eps = 10 . * CppAD:: numeric_limits< double >:: epsilon ();
//
// Create the atomic_reverse object corresponding to g(x)
atomic_reverse afun ( "atomic_reverse" );
//
// Create the function f(u) = g(u) for this example.
//
// domain space vector
size_t n = 3 ;
double u_0 = 1.00 ;
double u_1 = 2.00 ;
double u_2 = 3.00 ;
vector< AD<double> > au ( n);
au[ 0 ] = u_0;
au[ 1 ] = u_1;
au[ 2 ] = u_2;
// declare independent variables and start tape recording
CppAD:: Independent ( au);
// range space vector
size_t m = 2 ;
vector< AD<double> > ay ( m);
// call atomic function
vector< AD<double> > ax = au;
afun ( ax, ay);
// create f: u -> y and stop tape recording
CppAD:: ADFun<double> f;
f. Dependent ( au, ay); // y = f(u)
//
// check function value
double check = u_2 * u_2;
ok &= NearEqual ( Value ( ay[ 0 ]) , check, eps, eps);
check = u_0 * u_1;
ok &= NearEqual ( Value ( ay[ 1 ]) , check, eps, eps);
// --------------------------------------------------------------------
// zero order forward
//
vector<double> u0 ( n), y0 ( m);
u0[ 0 ] = u_0;
u0[ 1 ] = u_1;
u0[ 2 ] = u_2;
y0 = f. Forward ( 0 , u0);
check = u_2 * u_2;
ok &= NearEqual ( y0[ 0 ] , check, eps, eps);
check = u_0 * u_1;
ok &= NearEqual ( y0[ 1 ] , check, eps, eps);
// --------------------------------------------------------------------
// first order reverse
//
// value of Jacobian of f
double check_jac[] = {
0.0 , 0.0 , 2.0 * u_2,
u_1, u_0, 0.0
} ;
vector<double> w ( m), dw ( n);
//
// check derivative of f_0 (x)
for ( size_t i = 0 ; i < m; i++)
{ w[ i] = 1.0 ;
w[ 1 - i] = 0.0 ;
dw = f. Reverse ( 1 , w);
for ( size_t j = 0 ; j < n; j++)
{ // compute partial in j-th component direction
ok &= NearEqual ( dw[ j], check_jac[ i * n + j], eps, eps);
}
}
// --------------------------------------------------------------------
// second order reverse
//
// value of Hessian of f_0
double check_hes_0[] = {
0.0 , 0.0 , 0.0 ,
0.0 , 0.0 , 0.0 ,
0.0 , 0.0 , 2.0
} ;
//
// value of Hessian of f_1
double check_hes_1[] = {
0.0 , 1.0 , 0.0 ,
1.0 , 0.0 , 0.0 ,
0.0 , 0.0 , 0.0
} ;
vector<double> u1 ( n), dw2 ( 2 * n );
for ( size_t j = 0 ; j < n; j++)
{ for ( size_t j1 = 0 ; j1 < n; j1++)
u1[ j1] = 0.0 ;
u1[ j] = 1.0 ;
// first order forward
f. Forward ( 1 , u1);
w[ 0 ] = 1.0 ;
w[ 1 ] = 0.0 ;
dw2 = f. Reverse ( 2 , w);
for ( size_t i = 0 ; i < n; i++)
ok &= NearEqual ( dw2[ i * 2 + 1 ], check_hes_0[ i * n + j], eps, eps);
w[ 0 ] = 0.0 ;
w[ 1 ] = 1.0 ;
dw2 = f. Reverse ( 2 , w);
for ( size_t i = 0 ; i < n; i++)
ok &= NearEqual ( dw2[ i * 2 + 1 ], check_hes_1[ i * n + j], eps, eps);
}
// --------------------------------------------------------------------
return ok;
}
Input File: example/atomic_three/reverse.cpp