Loading [MathJax]/extensions/TeX/newcommand.js
|
Prev
| Next
|
|
|
|
|
|
atomic_four_vector_rev_depend.cpp |
|
\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }This is cppad-20221105 documentation. Here is a link to its
current documentation
.
Example Optimizing Atomic Vector Usage
f(u, v)
For this example,
f : \B{R}^{3m} \rightarrow \B{R}
is defined by
f(u, v, w) = - ( u_0 + v_0 ) * w_0
.
where
u
,
v
, and
w
are in
\B{R}^m
.
Source
# include <cppad/cppad.hpp>
# include <cppad/example/atomic_four/vector/vector.hpp>
bool rev_depend(void)
{ bool ok = true;
using CppAD::NearEqual;
using CppAD::AD;
//
// vec_op
// atomic vector_op object
CppAD::atomic_vector<double> vec_op("atomic_vector");
//
// m
// size of u, v, and w
size_t m = 6;
//
// n
size_t n = 3 * m;
//
// add_op, mul_op, neg_op
typedef CppAD::atomic_vector<double>::op_enum_t op_enum_t;
op_enum_t add_op = CppAD::atomic_vector<double>::add_enum;
op_enum_t mul_op = CppAD::atomic_vector<double>::mul_enum;
op_enum_t neg_op = CppAD::atomic_vector<double>::neg_enum;
// -----------------------------------------------------------------------
// Record f(u, v, w) = - (u + v) * w
// -----------------------------------------------------------------------
// Independent variable vector
CPPAD_TESTVECTOR( CppAD::AD<double> ) a_ind(n);
for(size_t j = 0; j < n; ++j)
a_ind[j] = AD<double>(1 + j);
CppAD::Independent(a_ind);
//
// au, av, aw
CPPAD_TESTVECTOR( CppAD::AD<double> ) au(m), av(m), aw(m);
for(size_t i = 0; i < m; ++i)
{ au[i] = a_ind[0 * m + i];
av[i] = a_ind[1 * m + i];
aw[i] = a_ind[2 * m + i];
}
//
// ax = (au, av)
CPPAD_TESTVECTOR( CppAD::AD<double> ) ax(2 * m);
for(size_t i = 0; i < m; ++i)
{ ax[i] = au[i];
ax[m + i] = av[i];
}
//
// ay = u + v
CPPAD_TESTVECTOR( CppAD::AD<double> ) ay(m);
vec_op(add_op, ax, ay);
//
// ax = (ay, aw)
for(size_t i = 0; i < m; ++i)
{ ax[i] = ay[i];
ax[m + i] = aw[i];
}
//
// az = ay * w
CPPAD_TESTVECTOR( CppAD::AD<double> ) az(m);
vec_op(mul_op, ax, az);
//
// ay = - az
vec_op(neg_op, az, ay);
//
// f
CPPAD_TESTVECTOR( CppAD::AD<double> ) a_dep(1);
a_dep[0] = ay[0];
CppAD::ADFun<double> f(a_ind, a_dep);
//
// size_var
// phantom variable, independent variables, operator results
ok &= f.size_var() == 1 + n + 3 * m;
//
// optimize
// The atomic funciton rev_depend routine is called by optimizer
f.optimize();
//
// size_var
// phantom variablem, independent variables, operator variables
ok &= f.size_var() == 1 + n + 3;
//
//
return ok;
}
Input File: example/atomic_four/vector/rev_depend.cpp