|
Prev
| Next
|
|
|
|
|
|
atomic_four_mat_mul_base_mat_mul.hpp |
|
@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its
current documentation
.
Atomic Multiply Base Matrices: Example Implementation
Source
# include <cppad/example/atomic_four/mat_mul/mat_mul.hpp>
namespace CppAD { // BEGIN_CPPAD_NAMESPACE
//
// base_mat_mul
template <class Base>
void atomic_mat_mul<Base>::base_mat_mul(
size_t n_left ,
size_t n_middle ,
size_t n_right ,
const CppAD::vector<Base>& x ,
CppAD::vector<Base>& y )
{
# ifndef NDEBUG
// n, m
size_t n = x.size();
size_t m = y.size();
//
// check sizes
assert( n == n_middle * (n_left + n_right ) );
assert( m == n_left * n_right );
# endif
//
// offset
size_t offset = n_left * n_middle;
//
// y
// y[ i * n_right + j] = sum_k
// x[i * n_middle + k] * x[ offset + k * n_right + j]
// type_y
for(size_t i = 0; i < n_left; ++i)
{ for(size_t j = 0; j < n_right; ++j)
{ Base sum_ij = Base(0);
for(size_t k = 0; k < n_middle; ++k)
{ Base left_ik = x[i * n_middle + k];
Base right_kj = x[offset + k * n_right + j];
sum_ij += left_ik * right_kj;
}
y[i * n_right + j] = sum_ij;
}
}
return;
}
} // END_CPPAD_NAMESPACE
Input File: include/cppad/example/atomic_four/mat_mul/base_mat_mul.hpp