|
Prev
| Next
|
|
|
|
|
|
atomic_four_lin_ode_rev_depend.cpp |
|
@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its
current documentation
.
Atomic Linear ODE Reverse Dependency Analysis: Example and Test
Purpose
This example demonstrates calculating reverse dependency with
the atomic_four_lin_ode
class; see
atomic_four_lin_ode_rev_depend.hpp
.
f(x)
For this example, the function @(@
f(x) = z_2 (r, u)
@)@ where
@(@
z(t, u)
@)@ solves the following ODE
@[@
z_t (t, x) =
\left( \begin{array}{cccc}
0 & 0 & 0 & 0 \\
x_0 & 0 & 0 & 0 \\
0 & x_1 & 0 & 0 \\
0 & 0 & x_2 & 0 \\
\end{array} \right)
z(t, u)
\W{,}
z(0, u) =
\left( \begin{array}{c}
x_3 \\
x_4 \\
x_5 \\
x_6 \\
\end{array} \right)
@]@
Solution
The actual solution to this ODE is
@[@
z(t, x) =
\left( \begin{array}{l}
x_3 \\
x_4 + x_0 x_3 t \\
x_5 + x_1 x_4 t + x_1 x_0 x_3 t^2 / 2 \\
x_6 + x_2 x_5 t + x_2 x_1 x_4 t^2 / 2 + x_2 x_1 x_0 x_3 t^3 / 6
\end{array} \right)
@]@
Source
# include <cppad/cppad.hpp>
# include <cppad/example/atomic_four/lin_ode/lin_ode.hpp>
namespace { // BEGIN_EMPTY_NAMESPACE
template <class Scalar, class Vector>
Vector Y(Scalar t, const Vector& x)
{ size_t m = 4;
Vector y(m);
//
y[0] = x[3];
y[1] = x[4] + x[0]*x[3]*t;
y[2] = x[5] + x[1]*x[4]*t + x[1]*x[0]*x[3]*t*t/2.0;
y[3] = x[6] + x[2]*x[5]*t + x[2]*x[1]*x[4]*t*t/2.0
+ x[2]*x[1]*x[0]*x[3]*t*t*t/6.0;
//
return y;
}
} // END_EMPTY_NAMESPACE
bool rev_depend(void)
{ // ok, eps
bool ok = true;
//
// sparse_rc, AD, eps99
typedef CppAD::sparse_rc< CppAD::vector<size_t> > sparse_rc;
using CppAD::AD;
double eps99 = std::numeric_limits<double>::epsilon() * 99.0;
// -----------------------------------------------------------------------
// Record f
// -----------------------------------------------------------------------
//
// afun
CppAD::atomic_lin_ode<double> afun("atomic_lin_ode");
//
// m, r
size_t m = 4;
double r = 2.0;
double step = 1.0;
//
// pattern, transpose
size_t nr = m;
size_t nc = m;
size_t nnz = 3;
sparse_rc pattern(nr, nc, nnz);
for(size_t k = 0; k < nnz; ++k)
{ size_t i = k + 1;
size_t j = k;
pattern.set(k, i, j);
}
bool transpose = false;
//
// ax
CPPAD_TESTVECTOR( AD<double> ) ax(nnz + m);
for(size_t k = 0; k < nnz + m; ++k)
ax[k] = double(k + 1);
CppAD::Independent(ax);
//
// ay
CPPAD_TESTVECTOR( AD<double> ) ay(m);
size_t call_id = afun.set(r, step, pattern, transpose);
afun(call_id, ax, ay);
//
// z_index
size_t z_index = 1;
//
// az
CPPAD_TESTVECTOR( AD<double> ) az(1);
az[0] = ay[z_index];
//
// f
// optimize uses rev_depend
CppAD::ADFun<double> f(ax, az);
f.optimize();
// -----------------------------------------------------------------------
// check_f
// -----------------------------------------------------------------------
CppAD::Independent(ax);
AD<double> ar = r;
ay = Y(ar, ax);
az[0] = ay[z_index];
CppAD::ADFun<double> check_f(ax, az);
// -----------------------------------------------------------------------
// rev_depend
// use test_rev_depend to call rev_depend directly
// -----------------------------------------------------------------------
//
// depend_x
CppAD::vector<bool> ident_zero_x(nnz + m), depend_x(nnz + m), depend_y(m);
for(size_t i = 0; i < m; ++i)
{ depend_y[i] = i == z_index;
ident_zero_x[i] = false;
}
afun.test_rev_depend(call_id, ident_zero_x, depend_x, depend_y);
//
// x
CPPAD_TESTVECTOR(double) x(nnz + m);
for(size_t j = 0; j < nnz + m; ++j)
x[j] = double( j + 2 );
//
// dw
check_f.Forward(0, x);
CPPAD_TESTVECTOR(double) w(1), dw(nnz + m);
w[0] = 1.0;
dw = check_f.Reverse(1, w);
//
// ok
// note that for this x, partial w.r.t x[j] is non-zero if and only if
// y[z_index] depends on x[j]
for(size_t j = 0; j < nnz + m; ++j)
ok &= depend_x[j] == (dw[j] != 0.0);
//
// -----------------------------------------------------------------------
// forward mode on f
// Check that the optimized version of agrees with check_f.
// -----------------------------------------------------------------------
//
// z
// zero order forward mode computation of f(x)
CPPAD_TESTVECTOR(double) z = f.Forward(0, x);
//
// ok
CPPAD_TESTVECTOR(double) check_z = check_f.Forward(0, x);
ok &= CppAD::NearEqual(z[0], check_z[0], eps99, eps99);
//
// du, ok
CPPAD_TESTVECTOR(double) dx(nnz + m), dz(1), check_dz(1);
for(size_t j = 0; j < nnz + m; ++j)
dx[j] = 0.0;
//
for(size_t j = 0; j < nnz + m; ++j)
{ dx[j] = 1.0;
dz = f.Forward(1, dx);
check_dz = check_f.Forward(1, dx);
ok &= CppAD::NearEqual(dz[0], check_dz[0], eps99, eps99);
dx[j] = 0.0;
}
// -----------------------------------------------------------------------
return ok;
}
Input File: example/atomic_four/lin_ode/rev_depend.cpp