@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
This is cppad-20221105 documentation. Here is a link to its
current documentation
.
Atomic Linear ODE Jacobian Sparsity Pattern: Example Implementation
Purpose
The jac_sparsity routine overrides the virtual functions
used by the atomic_four base class for Jacobian sparsity calculations; see
jac_sparsity
.
S[ g(x) ]
We use @(@
S [ g(x) ]
@)@ to denote the sparsity pattern
for a function @(@
g : \B{R}^n \rightarrow \B{R}^m
@)@ as a vector of sets.
To be specific, for @(@
i = 0, \ldots , m-1
@)@,
@(@
S_i [ g(x) ]
@)@ is the set of indices between
zero and @(@
n - 1
@)@ such that
@(@
\partial g_i (x) / \partial x_j
@)@ is possibly non-zero.
N [ g(x) ]
We use @(@
N[ g(x) ]
@)@ to denote the set of @(@
i
@)@
such that @(@
g_i (x)
@)@ is not identically zero.
J_i [ A(x) ]
We use @(@
J_i [ A(x) ]
@)@ to denote the set of @(@
j
@)@
between zero and @(@
m-1
@)@ such that
@(@
A_{i,j}
@)@ is not known to be identically zero.
P_i [ g(x) ]
We use @(@
P_i [ g(x) ]
@)@ to denote the set if sparsity pattern indices
@[@
P_i [ g(x) ] = \left\{ p \W{:}
0 \leq p < \R{nnz} \W{,}
i = \R{row} [p] \W{,}
\R{col}[p] \in N [ g(x) ]
\right\}
@]@
Theory
This routine must calculate the following value for
@(@
i = 0, \ldots, m-1
@)@; see m
:
@[@
S_i [ y (x) ] = \bigcup_k S_i [ v^k (x) ]
@]@
The set @(@
S_i [ v^0 (x) ]
@)@ has just one element
corresponding to @(@
b_i (x)
@)@; i.e,
@[@
S_i [ v^0 (x) ] = \{ \R{nnz} + i \}
@]@
see b(x)
.
Furthermore, for @(@
k > 0
@)@,
@[@
v^k (x) = \frac{r}{k} A(x) v^{k-1} (x)
@]@
@[@
S_i [ v^k (x) ] = S_i [ A(x) v^{k-1} (x) ]
@]@
@[@
S_i [ v^k (x) ] = P_i [ v^{k-1} (x) ]
\cup \left\{ S_j [ v^{k-1} (x) ] \W{:} j \in J_i [ A(x) ] \right\}
@]@
Suppose that @(@
\ell
@)@ is such that for all @(@
i
@)@
the following two conditions hold
@[@
N [ v^\ell (x) ] \subset \bigcup_{k < \ell} N [ v^k (x) ]
@]@
@[@
S_i [ v^\ell (x) ] \subset \bigcup_{k < \ell} S_i [ v^k (x) ]
@]@
From the first condition above it follows that
@[@
P_i [ v^\ell (x) ] \subset \bigcup_{k < \ell} P_i [ v^k (x) ]
@]@
Using the second condition we have
@[@
S_i [ v^{\ell+1} (x) ] = P_i [ v^\ell (x) ]
\cup \left\{ S_j [ v^\ell (x) ] \W{:} j \in J_i [ A(x) ] \right\}
@]@
@[@
S_i [ v^{\ell+1} (x) ] \subset
\left\{ S_j [ v^\ell (x) ] \W{:} j \in J_i [ A(x) ] \right\}
\bigcup_{k \leq \ell } S_i [ v^k (x) ]
@]@
@[@
S_i [ v^{\ell+1} (x) ]
\subset
\bigcup_{k \leq \ell} S_i [ v^k (x) ] \cup
\left\{ S_j [ v^k (x) ] \W{:} j \in J_i [ A(x) ] \right\}
@]@
@[@
S_i [ v^{\ell+1} (x) ]
\subset
\bigcup_{k < \ell} S_i [ v^k (x) ] \cup
\left\{ S_j [ v^k (x) ] \W{:} j \in J_i [ A(x) ] \right\}
@]@
@[@
S_i [ v^{\ell+1} (x) ]
\subset
\bigcup_{k \leq \ell} S_i [ v^k (x) ]
@]@
@[@
S_i [ v^{\ell+1} (x) ]
\subset
\bigcup_{k < \ell} S_i [ v^k (x) ]
@]@
It follows that
@[@
S_i [ y(x) ] = \bigcup_{k < \ell} S_i [ v^k (x) ]
@]@
# include <cppad/example/atomic_four/lin_ode/lin_ode.hpp>
namespace CppAD { // BEGIN_CPPAD_NAMESPACE//// jac_sparsity overridetemplate <class Base>
bool atomic_lin_ode<Base>::jac_sparsity(
size_t call_id ,
bool dependency ,
const CppAD::vector<bool>& ident_zero_x ,
const CppAD::vector<bool>& select_x ,
const CppAD::vector<bool>& select_y ,
CppAD::sparse_rc< CppAD::vector<size_t> >& pattern_out )
{
//// pattern_A, transpose, nnz
Base r;
Base step;
sparse_rc pattern_A;
bool transpose;
get(call_id, r, step, pattern_A, transpose);
size_t nnz = pattern_A.nnz();
//// m, n
size_t m = select_y.size();
size_t n = select_x.size();
//CPPAD_ASSERT_UNKNOWN( n == nnz + m );
CPPAD_ASSERT_UNKNOWN( pattern_A.nr() == m );
CPPAD_ASSERT_UNKNOWN( pattern_A.nc() == m );
//// pattern_out// Accumulates elements of the sparsity pattern for y(x) that satisfy// select_x and select_y
pattern_out.resize(m, n, 0);
//// list_setvec// This vector of sets interface is not in the CppAD user APItypedef CppAD::local::sparse::list_setvec list_setvec;
//// setvec// Accumulates the sparsity pattern for y(x) that satisfy select_x.// There are m sets and the set elements are between zero and n-1.
list_setvec setvec;
size_t n_set = m;
size_t end = n;
setvec.resize(n_set, end);
//// setvec, pattern_out// iniialize as equal to S[ v^0 (x) ]for(size_t i = 0; i < m; ++i)
{ size_t element = nnz + i;
if( select_x[element] )
{ setvec.add_element(i, element);
if( select_y[i] )
pattern_out.push_back(i, element);
}
}
//// non_zero// Accumulates union_k for k < ell, N[ v^k (x) ]// initialize as N[ v^0 (x) ]
CppAD::vector<bool> non_zero(m);
for(size_t i = 0; i < m; ++i)
non_zero[i] = ! ident_zero_x[nnz + i];
//// change// Did setvec or non_zero change in previous iteration of while loop
bool change = true;
while(change)
{ change = false;
// we use k = 1, 2, ... to denote the pass through this loop// setvec[i] contains union q < k S_i [ v^q (x) ]// non_zero contains union q < k N [ v^q (x) ]//// For each element of the sparsity pattern for A subject to select_xfor(size_t p = 0; p < nnz; ++p) if( select_x[p] )
{ CPPAD_ASSERT_UNKNOWN( ! ident_zero_x[p] );
size_t i = pattern_A.row()[p];
size_t j = pattern_A.col()[p];
if( transpose )
std::swap(i, j);
//if( non_zero[j] )
{ // p, corresponding to A_{i,j}, is in P_i [ v^k (x) ]if( ! setvec.is_element(i, p) )
{ change = true;
setvec.add_element(i, p);
if( select_y[i] )
pattern_out.push_back(i, p);
}
}
// j is in J_i [ A(x) ]
list_setvec::const_iterator itr(setvec, j);
size_t element = *itr;
while(element != end )
{ if( ! setvec.is_element(i, element) )
{ change = true;
setvec.add_element(i, element);
if( select_y[i] )
pattern_out.push_back(i, element);
}
++itr;
element = *itr;
}
// A_{i,j} update to non_zeroif( non_zero[i] == false )
{ if( non_zero[j] == true )
{ change = true;
non_zero[i] = true;
}
}
}
}
//returntrue;
}
} // END_CPPAD_NAMESPACE