Prev | Next | asin_reverse | Headings |
p
-th order Taylor coefficient
row vectors corresponding to these functions
and replace @(@
z^{(j)}
@)@ by
@[@
( z^{(j)} , b^{(j)} )
@]@
in the definition for @(@
G
@)@ and @(@
H
@)@.
The zero order forward mode formulas for the
asin
function are
@[@
\begin{array}{rcl}
q^{(0)} & = & 1 \mp x^{(0)} x^{(0)} \\
b^{(0)} & = & \sqrt{ q^{(0)} } \\
z^{(0)} & = & F( x^{(0)} )
\end{array}
@]@
where @(@
F(x) = \R{asin} (x)
@)@ for @(@
-
@)@
and @(@
F(x) = \R{asinh} (x)
@)@ for @(@
+
@)@.
For the orders @(@
j
@)@ greater than zero we have
@[@
\begin{array}{rcl}
q^{(j)} & = &
\mp \sum_{k=0}^j x^{(k)} x^{(j-k)}
\\
b^{(j)} & = &
\frac{1}{j} \frac{1}{ b^{(0)} }
\left(
\frac{j}{2} q^{(j)}
- \sum_{k=1}^{j-1} k b^{(k)} b^{(j-k)}
\right)
\\
z^{(j)} & = & \frac{1}{j} \frac{1}{ b^{(0)} }
\left(
j x^{(j)}
- \sum_{k=1}^{j-1} k z^{(k)} b^{(j-k)}
\right)
\end{array}
@]@
If @(@
j = 0
@)@, we note that
@(@
F^{(1)} ( x^{(0)} ) = 1 / b^{(0)}
@)@ and hence
@[@
\begin{array}{rcl}
\D{H}{ x^{(j)} } & = &
\D{G}{ x^{(j)} }
+ \D{G}{ z^{(j)} } \D{ z^{(j)} }{ x^{(0)} }
+ \D{G}{ b^{(j)} } \D{ b^{(j)} }{ q^{(0)} } \D{ q^{(0)} }{ x^{(0)} }
\\
& = &
\D{G}{ x^{(j)} }
+ \D{G}{ z^{(j)} } \frac{1}{ b^{(0)} }
\mp \D{G}{ b^{(j)} } \frac{ x^{(0)} }{ b^{(0)} }
\end{array}
@]@
If @(@
j > 0
@)@, then for @(@
k = 1, \ldots , j-1
@)@
@[@
\begin{array}{rcl}
\D{H}{ b^{(0)} } & = &
\D{G}{ b^{(0)} }
+ \D{G}{ z^{(j)} } \D{ z^{(j)} }{ b^{(0)} }
+ \D{G}{ b^{(j)} } \D{ b^{(j)} }{ b^{(0)} }
\\
& = &
\D{G}{ b^{(0)} }
- \D{G}{ z^{(j)} } \frac{ z^{(j)} }{ b^{(0)} }
- \D{G}{ b^{(j)} } \frac{ b^{(j)} }{ b^{(0)} }
\\
\D{H}{ x^{(0)} } & = &
\D{G}{ x^{(0)} }
+
\D{G}{ b^{(j)} } \D{ b^{(j)} }{ q^{(j)} } \D{ q^{(j)} }{ x^{(0)} }
\\
& = &
\D{G}{ x^{(0)} }
\mp \D{G}{ b^{(j)} } \frac{ x^{(j)} }{ b^{(0)} }
\\
\D{H}{ x^{(j)} } & = &
\D{G}{ x^{(j)} }
+ \D{G}{ z^{(j)} } \D{ z^{(j)} }{ x^{(j)} }
+ \D{G}{ b^{(j)} } \D{ b^{(j)} }{ q^{(j)} } \D{ q^{(j)} }{ x^{(j)} }
\\
& = &
\D{G}{ x^{(j)} }
+ \D{G}{ z^{(j)} } \frac{1}{ b^{(0)} }
\mp \D{G}{ b^{(j)} } \frac{ x^{(0)} }{ b^{(0)} }
\\
\D{H}{ b^{(j - k)} } & = &
\D{G}{ b^{(j - k)} }
+ \D{G}{ z^{(j)} } \D{ z^{(j)} }{ b^{(j - k)} }
+ \D{G}{ b^{(j)} } \D{ b^{(j)} }{ b^{(j - k)} }
\\
& = &
\D{G}{ b^{(j - k)} }
- \D{G}{ z^{(j)} } \frac{k z^{(k)} }{j b^{(0)} }
- \D{G}{ b^{(j)} } \frac{ b^{(k)} }{ b^{(0)} }
\\
\D{H}{ x^{(k)} } & = &
\D{G}{ x^{(k)} }
+ \D{G}{ z^{(j)} } \D{ z^{(j)} }{ x^{(k)} }
+ \D{G}{ b^{(j)} } \D{ b^{(j)} }{ q^{(j)} } \D{ q^{(j)} }{ x^{(k)} }
\\
& = &
\D{G}{ x^{(k)} }
\mp \D{G}{ b^{(j)} } \frac{ x^{(j-k)} }{ b^{(0)} }
\\
\D{H}{ z^{(k)} } & = &
\D{G}{ z^{(k)} }
+ \D{G}{ z^{(j)} } \D{ z^{(j)} }{ z^{(k)} }
+ \D{G}{ b^{(j)} } \D{ b^{(j)} }{ z^{(k)} }
\\
& = &
\D{G}{ z^{(k)} }
- \D{G}{ z^{(j)} } \frac{k b^{(j-k)} }{ j b^{(0)} }
\end{array}
@]@