Prev Next equal_op_seq.cpp Headings

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@ This is cppad-20221105 documentation. Here is a link to its current documentation .
EqualOpSeq: Example and Test
# include <cppad/cppad.hpp>

bool EqualOpSeq(void)
{   bool ok = true;
    using CppAD::AD;
    using CppAD::EqualOpSeq;

    // domain space vector
    size_t n  = 1;
    double x0 = 1.;
    CPPAD_TESTVECTOR(AD<double>) x(n);
    x[0]      = x0;

    // declare independent variables and start tape recording
    CppAD::Independent(x);

    AD<double> a = 1. + x[0];  // this variable is 1 + x0
    AD<double> b = 2. * x[0];  // this variable is 2 * x0

    // both a and b are variables
    ok &= (a == b);            // 1 + 1     == 2 * 1
    ok &= ! EqualOpSeq(a, b);  // 1 + x[0]  != 2 * x[0]

    // range space vector
    size_t m = 1;
    CPPAD_TESTVECTOR(AD<double>) y(m);
    y[0] = a;

    // both y[0] and a are variables
    EqualOpSeq(y[0], a);       // 2 * x[0] == 2 * x[0]

    // create f: x -> y and stop tape recording
    CppAD::ADFun<double> f(x, y);

    // both a and b are parameters (after the creation of f above)
    ok &= EqualOpSeq(a, b);    // 1 + 1 == 2 * 1

    return ok;
}

Input File: example/general/equal_op_seq.cpp