Prev Next Bib

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@ This is cppad-20221105 documentation. Here is a link to its current documentation .
Bibliography

Abramowitz and Stegun
Handbook of Mathematical Functions, Dover, New York.

The C++ Programming Language
Bjarne Stroustrup, The C++ Programming Language, Special ed., AT&T, 2000

Evaluating Derivatives
Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Andreas Griewank, SIAM, Philadelphia, 2000

Numerical Recipes
Numerical Recipes in Fortran: The Art of Scientific Computing, Second Edition, William H. Press, William T. Vetterling, Saul, A. Teukolsky, Brian R. Flannery, Cambridge University Press, 1992

Shampine, L.F.
Implementation of Rosenbrock Methods, ACM Transactions on Mathematical Software, Vol. 8, No. 2, June 1982.
Input File: omh/appendix/bib.omh