|
Prev
| Next
|
|
|
|
|
|
AddEq.cpp |
Headings |
@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its
current documentation
.
AD Compound Assignment Addition: Example and Test
# include <cppad/cppad.hpp>
bool AddEq(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// domain space vector
size_t n = 1;
double x0 = .5;
CPPAD_TESTVECTOR(AD<double>) x(n);
x[0] = x0;
// declare independent variables and start tape recording
CppAD::Independent(x);
// range space vector
size_t m = 2;
CPPAD_TESTVECTOR(AD<double>) y(m);
y[0] = x[0]; // initial value
y[0] += 2; // AD<double> += int
y[0] += 4.; // AD<double> += double
y[1] = y[0] += x[0]; // use the result of a compound assignment
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f(x, y);
// check value
ok &= NearEqual(y[0] , x0+2.+4.+x0, eps99, eps99);
ok &= NearEqual(y[1] , y[0], eps99, eps99);
// forward computation of partials w.r.t. x[0]
CPPAD_TESTVECTOR(double) dx(n);
CPPAD_TESTVECTOR(double) dy(m);
dx[0] = 1.;
dy = f.Forward(1, dx);
ok &= NearEqual(dy[0], 2., eps99, eps99);
ok &= NearEqual(dy[1], 2., eps99, eps99);
// reverse computation of derivative of y[0]
CPPAD_TESTVECTOR(double) w(m);
CPPAD_TESTVECTOR(double) dw(n);
w[0] = 1.;
w[1] = 0.;
dw = f.Reverse(1, w);
ok &= NearEqual(dw[0], 2., eps99, eps99);
// use a VecAD<Base>::reference object with computed addition
CppAD::VecAD<double> v(1);
AD<double> zero(0);
AD<double> result = 1;
v[zero] = 2;
result += v[zero];
ok &= (result == 3);
return ok;
}
Input File: example/general/add_eq.cpp